Understanding NVH Prediction: The Role of Modal Analysis in the Automotive Industry
NVH (noise, vibration, and harshness) prediction is a critical process in the automotive industry to ensure customer satisfaction, safety, and compliance with regulatory requirements.
Acoustic Testing
Acoustic Testing is performed to determine if the material can resist the specified Acoustic environment. It must resist this environment without degradation of its functional performance and/or structural integrity. Acoustic Testing or Acoustic Emission Testing is the measurement of sound emissions radiating from the equipment under test. In other words, how loud is the equipment?
NVH Testing for Automotive
NVH, which stands for Noise, Vibration, and Harshness, is the study of the noise and modification vibration characteristics of vehicles and is basically a measure of how much unpleasant aural and tactile feedback the vehicles deliver as you drive. NVH testing enables early recognition of NVH phenomena, which can then be avoided early during the development stage of the powertrain. This later makes driving in the production vehicle more comfortable and serves to avoid complaints and a loss of image.
Common Mistakes EV Battery Manufacturers Make
Embark on a journey through the intricacies of EV battery manufacturing. Explore real cases unveiling oversights in Vibration Testing, Mechanical Testing, and more. Discover solutions to elevate your processes and emerge as a trailblazer in the competitive electric vehicle landscape.
French Automaker Optimizes Battery Pack with Simcenter Amesim
In the pursuit of excellence and innovation, PSA Peugeot Citroën embraced the power of Siemens Digital Industries Software's Simcenter™. The comprehensive simulation and testing capabilities enabled them to revolutionize the automotive industry and set new standards for vehicle performance, safety, and environmental sustainability. As technology continues to advance, embracing cutting-edge solutions like Simcenter™ will be crucial for any automotive manufacturer seeking to stay ahead in this dynamic and competitive landscape.
Modal Analysis for NVH Prediction: The Role of Testing and Simulation
NVH (noise, vibration, and harshness) prediction is a critical process in the automotive industry to ensure customer satisfaction, safety, and compliance with regulatory requirements. Modal analysis is a popular technique used for NVH prediction, involving both testing and simulation. The goal of modal analysis is to measure the natural frequencies, damping ratios, and mode shapes of a structure, which can be used to identify the sources of noise and vibration and make improvements to the design. While modal analysis offers several benefits, such as cost savings and faster time to market, there are also some challenges associated with the technique, including complexity and cost. In this article, we will explore modal analysis for NVH prediction, its benefits, and its challenges.
Thermal Characterization of Complex Electronics: A Comprehensive Guide
Thermal characterization is crucial for comprehending the behavior of complex electronics. It involves analyzing and measuring heat generation, dissipation, and management. This article provides a basic overview of thermal characterization, including structure and function of electronic components, and various techniques and tools used in the field. Get a better understanding of thermal characterization and its significance in ensuring the reliability and safety of electronic components.
Thermal characterization of complex electronics: A basic primer on structure functions
The evolution of power, size, and temperature in electronics design has led to new challenges in system reliability and lifetime. In the past, overheating of critical components was the major cause of system breakdown, but today, other issues also arise. Cooling is a 3D effect, and accurate thermal characterization is necessary for optimal design. The development of thermal transient measurements has culminated in the Cauer-ladder network model and the Simcenter T3STER™ thermal transient analysis software system. Using structure functions, engineers can now identify the physical characteristics of layers and evaluate the thermal performance at the system level, from LED packages to laptops and laser printers.
Effective Battery Testing for Electric Vehicle
Electric vehicles are clearly becoming an expanding part of the automotive scene, assuring low or no emissions, conceivably low cost of fuel from the power grid, yet they will continue to drop us safely from a place to another. However, electric vehicle design and manufacturing is a clear paradigm shift for the Automotive Industry: new technologies, new drive systems and test plans.